Node Libraries

GPI's functionality is easily extended through its node libraries. Nodes can provide new algorithms, visualization and I/O.

  • core-nodes
    The core nodes are a collection of basic data manipulation and visualization algorithms. This node library is the "default library" packaged with the GPI Stack.
  • philips-data-reader
    The philips-data-reader project provides compiled binary packages (closed source) of the ReadPhilips node for reading raw MR data.
  • gpi-ismrmrd
    Nodes for reading and writing to the ISMRMRD format and nodes that take advantage of the ISMRMRD built-in MR reconstruction toolkit.
  • gpi-bart
    Nodes that wrap the Berkeley Advanced Reconstruction Toolkit.
  • gpi-neurotools
    For wrapping tools that use the NIfTI file format (e.g. FSL).
  • Pulseq-GPI
    A Python language based implementation of Pulseq in GPI Lab.
  • Community Libraries
    If you, or someone you know, is interested in contributing to the list of known GPI node libraries, let us know by emailing us at

Issues and Bugs

For questions about software bugs and to see if some one else has already reported the same issue, check the issue tracker for each of the GPI projects:

  • core-nodes - Bugs in specific core nodes.
  • framework - Issues with the user interface, network canvas and documentation.

GPI Bibliography

The following work makes use of the GPI project. If you have a publication that references GPI, please tell us at

  • Robison RK, Anderson AG III, Pipe JG.
    Three-dimensional ultrashort echo-time imaging using a FLORET trajectory
    Magn Reson Imag. 2016. DOI: 10.1002/mrm.26500
  • Hu, H. H., Li, Z., Pokorney, A. L., Chia, J. M., Stefani, N., Pipe, J. G., & Miller, J. H.
    Assessment of Cerebral Blood Perfusion Reserve with Acetazolamide Using 3D Spiral ASL MRI: Preliminary Experience in Pediatric Patients.
    Magn Reson Imag. 2016. DOI: 10.1016/j.mri.2016.08.019
  • Schär M, Gabr RE, El-Sharkawy AM, Steinberg A, Bottomley PA, Weiss RG.
    Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts.
    J Cardiovasc Magn Reson. 2015;17(1):70. DOI: 10.1186/s12968-015-0175-4.
  • Li Z, Wang D, Robison RK, Zwart NR, Schär M, Karis JP, Pipe JG.
    Sliding-slab three-dimensional TSE imaging with a spiral-In/Out readout.
    Magn Reson Med 2015 DOI: 10.1002/mrm.25660
  • Schär M, Eggers H, Zwart NR, Chang Y, Bakhru A, and Pipe JG.
    Dixon water-fat separation in PROPELLER MRI acquired with two interleaved echoes.
    Magn Reson Med 2015 DOI: 10.1002/mrm.25656
  • Li Z, Schär M, Wang D, Zwart NR, Madhuranthakam AJ, Karis JP, Pipe JG.
    Arterial spin labeled perfusion imaging using three-dimensional turbo spin echo with a distributed spiral-in/out trajectory.
    Magn Reson Med 2015 DOI: 10.1002/mrm.25645
  • Wang D, Zwart NR, Li Z, Schär M, Pipe JG.
    Analytical three-point Dixon method: With applications for spiral water-fat imaging.
    Magn Reson Med 2015 DOI: 10.1002/mrm.25620
  • Chang Y, Pipe JG, Karis JP, Gibbs WN, Zwart NR and Schär M.
    The effects of SENSE on PROPELLER imaging.
    Magn Reson Med 2014 DOI: 10.1002/mrm.25557
  • Zwart NR and Pipe JG.
    Graphical Programming Interface: A development environment for MRI methods.
    Magn Reson Med 2014 DOI: 10.1002/mrm.25528
  • Pipe JG, Gibbs WN, Li Z, Karis JP, Schär M and Zwart NR.
    Revised motion estimation algorithm for PROPELLER MRI.
    Magn Reson Med 2014;72:430-437. DOI: 10.1002/mrm.24929